Q.

Let S K ,k=1,2,..,100   denote the sum of the infinite geometric series whose first term is k1 k!   and the common ratio is 1 K  . Then the value of 1002100!+k=1100k23k+1SK  is____ 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 3.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

Sk=k1k!11k=1(k1)!, for k>1k=2100k23k+11(k1)!=k=2100(k1)2k(k1)!
=k=2100k1(k2)!k(k1)!=10!21!+21!32!+32!43!+=21!10!+21!32!+32!43!++9998!10099!=1+21!10099!=310099!
1002100!+k=1100k23k+1Sk =10099!+310099!=3

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let S K ,k=1,2,…..,100   denote the sum of the infinite geometric series whose first term is k−1 k!   and the common ratio is 1 K  . Then the value of 1002100!+∑k=1100 k2−3k+1SK  is____