Q.

 Let x0 be the point of local maxima of f(x)=a·(b×c), where 

a=xi^-2j^+3k^,b=-2i^+xj^-k^ and c=7i^-2j^+xk^ . Then the value of a·b+b·c+c·a  at x=x0 is 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

-4

b

-22

c

14

d

-30

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

fx=x232x172x

=xx2-2+2(-2x+7)+3(4-7x)=x3-2x-4x+14+12-21x=x3-27x+26f'(x)=3x2-27f'(x)=0x=±3

f"x=6x f"-3=-18<0     fx has local maximum at x=-3 x0=-3

a¯=-3i^-2j^+3k^;b¯=-2i^-3j^-k^;c¯=7i^-2j^-3k^a¯·b¯=6+6-3=9b¯·c¯=-14+6+3=-5

c¯.a¯=-21+4-9=-26

a¯.b¯+b¯.c¯+c¯.a¯=-22

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
 Let x0 be the point of local maxima of f(x)=a→·(b→×c→), where a→=xi^-2j^+3k^,b→=-2i^+xj^-k^ and c→=7i^-2j^+xk^ . Then the value of a→·b→+b→·c→+c→·a→  at x=x0 is