Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

 Let x0 be the point of local maxima of f(x)=a·(b×c), where 

a=xi^-2j^+3k^,b=-2i^+xj^-k^ and c=7i^-2j^+xk^ . Then the value of a·b+b·c+c·a  at x=x0 is 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

-4

b

-22

c

14

d

-30

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

fx=x232x172x

=xx2-2+2(-2x+7)+3(4-7x)=x3-2x-4x+14+12-21x=x3-27x+26f'(x)=3x2-27f'(x)=0x=±3

f"x=6x f"-3=-18<0     fx has local maximum at x=-3 x0=-3

a¯=-3i^-2j^+3k^;b¯=-2i^-3j^-k^;c¯=7i^-2j^-3k^a¯·b¯=6+6-3=9b¯·c¯=-14+6+3=-5

c¯.a¯=-21+4-9=-26

a¯.b¯+b¯.c¯+c¯.a¯=-22

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring