Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let αx=expxβyγ be the solution of the differential equation 2x2ydy1xy2dx=0, x>0, y(2)=loge2. Then α+βγ equals :

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

0

b

3

c

-1

d

1

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

2x2ydy1xy2dx=02x2ydydx1+xy2=02ydydx+1xy2=1x2
Let y2=t
2ydydx=dtdx
dtdx+1x.t=1x2 is linear in “t”
I.F =e1xdx=elnx=x
General solution t.(x)=x1x2dx
y2x=lnx+c
Sub x=2,y=loge2
(ln2)2=ln2+cc=ln2y2x=lnx+ln2y2x=ln2xey2x=2xα=2,β=1,γ=2α+β-γ=2+12=1

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring