Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

limxπ2(1-sin x)8x3-π3cos x(π-2x)4

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

-π216

b

3π216

c

π216

d

-3π216

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Let f(x)=(1-sin x)8x3-π3cos x(π-2x)4=(1-sin x)cos x(2x-π)4x2+2πx+π2(2x-π)4

=(1-sin x)cos x4x2+2πx+π2(2x-π)3 Therefore limxπ2f(x)=limxπ2(1-sin x)cos x(2x-π)33π2

limxπ2f(x)=limxπ2(1-sin x)cos x(2x-π)33π2

Put 2x-π=y so that y0 as xπ/2.

. Therefore now  (1-sin x)cos x(2x-π)3=1-sin π+y2cos π+y2y3=1-cos y2-sin y2y3=-2sin2 y4y2sin y2y  =-2sin y4y/42116sin y2y/212=-116sin y4y/42sin y2y/2

Therefore from the above   limxπ2f(x)=-3π216×1×1

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon