Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

List all trigonometry formulas for Class 10

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Trigonometry is the branch of mathematics that studies relationships between angles and sides of triangles. This comprehensive guide presents all essential trigonometry formulas systematically, suitable for Class 10, Class 11, and college-level students.

1. Basic Trigonometric Ratios

These fundamental ratios form the foundation of trigonometry.

FunctionFormulaDefinition
Sinesin θ = Opposite/HypotenuseRatio of opposite side to hypotenuse
Cosinecos θ = Adjacent/HypotenuseRatio of adjacent side to hypotenuse
Tangenttan θ = Opposite/AdjacentRatio of opposite side to adjacent side
Cosecantcosec θ = 1/sin θ = Hypotenuse/OppositeReciprocal of sine
Secantsec θ = 1/cos θ = Hypotenuse/AdjacentReciprocal of cosine
Cotangentcot θ = 1/tan θ = Adjacent/OppositeReciprocal of tangent

2. Reciprocal Identities

IdentityFormula
Sine-Cosecantsin θ = 1/cosec θ
Cosine-Secantcos θ = 1/sec θ
Tangent-Cotangenttan θ = 1/cot θ
Cosecant-Sinecosec θ = 1/sin θ
Secant-Cosinesec θ = 1/cos θ
Cotangent-Tangentcot θ = 1/tan θ

3. Quotient Identities

IdentityFormula
Tangenttan θ = sin θ/cos θ
Cotangentcot θ = cos θ/sin θ

4. Pythagorean Identities

These identities are derived from the Pythagorean theorem.

IdentityFormula
Primary Identitysin²θ + cos²θ = 1
Derived Identity 11 + tan²θ = sec²θ
Derived Identity 21 + cot²θ = cosec²θ

Alternative Forms:

  • sin²θ = 1 - cos²θ
  • cos²θ = 1 - sin²θ
  • tan²θ = sec²θ - 1
  • cot²θ = cosec²θ - 1

5. Trigonometric Values of Standard Angles

Angle30°45°60°90°180°270°360°
sin θ01/21/√2√3/210-10
cos θ1√3/21/√21/20-101
tan θ01/√31√300
cot θ√311/√300
sec θ12/√3√22-11
cosec θ2√22/√31-1

6. Sign Convention in Different Quadrants

QuadrantAngle Rangesin θcos θtan θcot θsec θcosec θ
I0° to 90°++++++
II90° to 180°+----+
III180° to 270°--++--
IV270° to 360°-+--+-

Memory Tip: "All Students Take Calculus" (All positive, Sin positive, Tan positive, Cos positive)

7. Complementary Angle Formulas (Co-function Identities)

FormulaEquivalent
sin(90° - θ) = cos θcos(90° - θ) = sin θ
tan(90° - θ) = cot θcot(90° - θ) = tan θ
sec(90° - θ) = cosec θcosec(90° - θ) = sec θ

8. Supplementary Angle Formulas

FormulaValue
sin(180° - θ)sin θ
cos(180° - θ)-cos θ
tan(180° - θ)-tan θ
cot(180° - θ)-cot θ
sec(180° - θ)-sec θ
cosec(180° - θ)cosec θ

9. Negative Angle Formulas (Even-Odd Identities)

FormulaValueProperty
sin(-θ)-sin θOdd function
cos(-θ)cos θEven function
tan(-θ)-tan θOdd function
cot(-θ)-cot θOdd function
sec(-θ)sec θEven function
cosec(-θ)-cosec θOdd function

10. Sum and Difference Formulas (Compound Angle Formulas)

Addition Formulas:

FormulaExpansion
sin(A + B)sin A cos B + cos A sin B
cos(A + B)cos A cos B - sin A sin B
tan(A + B)(tan A + tan B)/(1 - tan A tan B)

Subtraction Formulas:

FormulaExpansion
sin(A - B)sin A cos B - cos A sin B
cos(A - B)cos A cos B + sin A sin B
tan(A - B)(tan A - tan B)/(1 + tan A tan B)

11. Double Angle Formulas

FunctionFormulas
sin 2θ2 sin θ cos θ
cos 2θcos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ
tan 2θ2 tan θ/(1 - tan²θ)
sin²θ(1 - cos 2θ)/2
cos²θ(1 + cos 2θ)/2
tan²θ(1 - cos 2θ)/(1 + cos 2θ)

12. Triple Angle Formulas

FormulaExpansion
sin 3θ3 sin θ - 4 sin³θ
cos 3θ4 cos³θ - 3 cos θ
tan 3θ(3 tan θ - tan³θ)/(1 - 3 tan²θ)

13. Half Angle Formulas

FormulaExpression
sin(θ/2)±√[(1 - cos θ)/2]
cos(θ/2)±√[(1 + cos θ)/2]
tan(θ/2)±√[(1 - cos θ)/(1 + cos θ)] = sin θ/(1 + cos θ) = (1 - cos θ)/sin θ

Note: The sign depends on the quadrant in which θ/2 lies.

14. Product-to-Sum Formulas

ProductSum/Difference
sin A sin B[cos(A - B) - cos(A + B)]/2
cos A cos B[cos(A - B) + cos(A + B)]/2
sin A cos B[sin(A + B) + sin(A - B)]/2
cos A sin B[sin(A + B) - sin(A - B)]/2

15. Sum-to-Product Formulas

Sum/DifferenceProduct
sin A + sin B2 sin[(A + B)/2] cos[(A - B)/2]
sin A - sin B2 cos[(A + B)/2] sin[(A - B)/2]
cos A + cos B2 cos[(A + B)/2] cos[(A - B)/2]
cos A - cos B-2 sin[(A + B)/2] sin[(A - B)/2]

16. Inverse Trigonometric Functions

Basic Definitions:

FunctionDomainRangeNotation
sin⁻¹x or arcsin x[-1, 1][-π/2, π/2] or [-90°, 90°]y = sin⁻¹x means x = sin y
cos⁻¹x or arccos x[-1, 1][0, π] or [0°, 180°]y = cos⁻¹x means x = cos y
tan⁻¹x or arctan x(-∞, ∞)(-π/2, π/2) or (-90°, 90°)y = tan⁻¹x means x = tan y
cot⁻¹x or arccot x(-∞, ∞)(0, π) or (0°, 180°)y = cot⁻¹x means x = cot y
sec⁻¹x or arcsec x(-∞, -1] ∪ [1, ∞)[0, π/2) ∪ (π/2, π]y = sec⁻¹x means x = sec y
cosec⁻¹x or arccosec x(-∞, -1] ∪ [1, ∞)[-π/2, 0) ∪ (0, π/2]y = cosec⁻¹x means x = cosec y

17. Properties of Inverse Trigonometric Functions

Reciprocal Properties:

PropertyFormula
sin⁻¹(1/x)cosec⁻¹x, for x ≥ 1 or x ≤ -1
cos⁻¹(1/x)sec⁻¹x, for x ≥ 1 or x ≤ -1
tan⁻¹(1/x)cot⁻¹x, for x > 0
tan⁻¹(1/x)-π + cot⁻¹x, for x < 0

Complementary Properties:

PropertyFormula
sin⁻¹x + cos⁻¹xπ/2
tan⁻¹x + cot⁻¹xπ/2
sec⁻¹x + cosec⁻¹xπ/2

Negative Argument Properties:

PropertyFormula
sin⁻¹(-x)-sin⁻¹x
cos⁻¹(-x)π - cos⁻¹x
tan⁻¹(-x)-tan⁻¹x
cot⁻¹(-x)π - cot⁻¹x
sec⁻¹(-x)π - sec⁻¹x
cosec⁻¹(-x)-cosec⁻¹x

18. Sum and Difference of Inverse Functions

FormulaExpression
sin⁻¹x + sin⁻¹ysin⁻¹[x√(1-y²) + y√(1-x²)]
sin⁻¹x - sin⁻¹ysin⁻¹[x√(1-y²) - y√(1-x²)]
cos⁻¹x + cos⁻¹ycos⁻¹[xy - √(1-x²)√(1-y²)]
cos⁻¹x - cos⁻¹ycos⁻¹[xy + √(1-x²)√(1-y²)]
tan⁻¹x + tan⁻¹ytan⁻¹[(x + y)/(1 - xy)], if xy < 1
tan⁻¹x - tan⁻¹ytan⁻¹[(x - y)/(1 + xy)]
2tan⁻¹xtan⁻¹[2x/(1 - x²)] = sin⁻¹[2x/(1 + x²)] = cos⁻¹[(1 - x²)/(1 + x²)]

19. Composition of Trigonometric and Inverse Functions

CompositionResultCondition
sin(sin⁻¹x)x-1 ≤ x ≤ 1
cos(cos⁻¹x)x-1 ≤ x ≤ 1
tan(tan⁻¹x)x-∞ < x < ∞
sin⁻¹(sin x)x-π/2 ≤ x ≤ π/2
cos⁻¹(cos x)x0 ≤ x ≤ π
tan⁻¹(tan x)x-π/2 < x < π/2

20. Important Conversion Formulas

ConversionFormula
sin⁻¹xcos⁻¹(√(1-x²)) = tan⁻¹(x/√(1-x²))
cos⁻¹xsin⁻¹(√(1-x²)) = tan⁻¹(√(1-x²)/x)
tan⁻¹xsin⁻¹(x/√(1+x²)) = cos⁻¹(1/√(1+x²))

21. Sine and Cosine Rules for Any Triangle

Sine Rule:

For any triangle ABC with sides a, b, c opposite to angles A, B, C:

Formula
a/sin A = b/sin B = c/sin C = 2R

Where R is the circumradius of the triangle.

Cosine Rule:

FormulaUse
a² = b² + c² - 2bc cos ATo find a side when two sides and included angle are known
b² = a² + c² - 2ac cos BTo find a side when two sides and included angle are known
c² = a² + b² - 2ab cos CTo find a side when two sides and included angle are known
cos A = (b² + c² - a²)/(2bc)To find an angle when all three sides are known
cos B = (a² + c² - b²)/(2ac)To find an angle when all three sides are known
cos C = (a² + b² - c²)/(2ab)To find an angle when all three sides are known

Projection Rule:

Formula
a = b cos C + c cos B
b = c cos A + a cos C
c = a cos B + b cos A

22. Area of Triangle Formulas

Formula NameFormulaWhen to Use
Using base and heightArea = (1/2) × base × heightWhen height is known
Using two sides and included angleArea = (1/2)ab sin C = (1/2)bc sin A = (1/2)ac sin BWhen two sides and included angle are known
Heron's FormulaArea = √[s(s-a)(s-b)(s-c)], where s = (a+b+c)/2When all three sides are known
Using circumradiusArea = abc/(4R)When all sides and circumradius are known
Using inradiusArea = rs, where r is inradius and s is semi-perimeterWhen inradius and semi-perimeter are known

23. Maximum and Minimum Values

FunctionMaximum ValueMinimum Value
sin θ1 (at θ = 90°)-1 (at θ = 270°)
cos θ1 (at θ = 0°, 360°)-1 (at θ = 180°)
tan θ+∞-∞
a sin θ + b cos θ√(a² + b²)-√(a² + b²)
a sin θ + ba + b-a + b
a cos θ + ba + b-a + b

24. Periodicity of Trigonometric Functions

FunctionPeriod
sin θ2π or 360°
cos θ2π or 360°
tan θπ or 180°
cot θπ or 180°
sec θ2π or 360°
cosec θ2π or 360°

General Rule:

  • sin(θ + 2nπ) = sin θ
  • cos(θ + 2nπ) = cos θ
  • tan(θ + nπ) = tan θ, where n is any integer

25. Allied Angles Formulas

Anglesincostan
-sin θcos θ-tan θ
90° - θcos θsin θcot θ
90° + θcos θ-sin θ-cot θ
180° - θsin θ-cos θ-tan θ
180° + θ-sin θ-cos θtan θ
270° - θ-cos θ-sin θcot θ
270° + θ-cos θsin θ-cot θ
360° - θ-sin θcos θ-tan θ
Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
List all trigonometry formulas for Class 10