Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

 Match each entry in List - I to the correct entries in List - II

 LIST-I LIST-II
I)Suppose ABC  is a triangle with three acute angles  A,B and C.  The point whose coordinates are  (cosBsinA,sinBcosA)  can be in the P)1st quadrant
II)2sinθ>1 and 3cosθ<1, then θQ)2nd quadrant
III)For  |cosx+sinx|=|sinx|+|cosx|,x  belongs toR)3rd quadrant
IV)If  1sinA1+sinA+sinAcosA=1cosA,  for all permissible values of  A, then  A can belong toS)4th quadrant

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

I-Q, II-Q, III-PR, IV-PS

b

I-P, II-Q, III-PR, IV-PQ

c

I-Q, II-Q, III-QR, IV-PS

d

I-P, II-R, III-Q, IV-P

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

A)  Since angles  A,B,and C are acute angles, we have
 A+B>π/2
 A>π2B
 sinAcosB>0
cosBsinA<0             (i)
Again,  B>π2A
 sinB>cosA
  sinBcosA>0               (ii)
From Eqs (i) and (ii), we get that  x-coordinate is  ve  and  y-coordinate is  +ve
Therefore, point is in 2nd quadrant only.
B)  2sinθ>1sinθ>0 3cosθ<1cosθ<0θ  2nd or 3rd quadrant
Hence, θ 2nd quadrant
C)  |cosx+sinx|=|sinx|+|cosx|
Thus, cosx and sinx  must have same sign or at least one is zero
So,   x 1st or 3rd quadrant
D) L.H.S1sinA|cosA|+sinAcosA=1cosA,   which is truly only if  |cosA|=cosA

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring