Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Match List-I with List-II.

 List-I List-II
AYoung’s ModulusIML1T1
BTorqueIIML1T2
CCoefficient of ViscosityIIIM1L3T2
DGravitational ConstantIVML2T2

Choose the correct answer from the options given below :

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

(A)-(I), (B)-(III), (C)-(II), (D)-(IV)

b

(A)-(II), (B)-(I), (C)-(IV), (D)-(III)

c

 (A)-(IV), (B)-(II), (C)-(III), (D)-(I)

d

(A)-(II), (B)-(IV), (C)-(I), (D)-(III)

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let's determine the dimensional formulas for each physical quantity in List-I and match them with List-II.

Step 1: Finding Dimensional Formulas

A) Young’s Modulus (Y)

Young’s modulus is defined as:

Y=StressStrainY = \frac{\text{Stress}}{\text{Strain}}

  • Stress = Force / Area = MLT2L2=ML1T2\frac{MLT^{-2}}{L^2} = ML^{-1}T^{-2}
  • Strain is dimensionless.

Thus, the dimensional formula of Young’s modulus is: ML1T2ML^{-1}T^{-2}

➡ Matches with II.

 

B) Torque (τ)

Torque is defined as:

τ=Force×Perpendicular distance\tau = \text{Force} \times \text{Perpendicular distance}

  • Force = MLT2MLT^{-2}
  • Distance = LL

Thus, the dimensional formula of Torque is: ML2T2ML^2T^{-2}

➡ Matches with IV.

 

C) Coefficient of Viscosity (η)

The coefficient of viscosity is given by:

η=Shear StressShear Rate\eta = \frac{\text{Shear Stress}}{\text{Shear Rate}}

  • Shear Stress = ForceArea=ML1T2\frac{\text{Force}}{\text{Area}} = ML^{-1}T^{-2}
  • Shear Rate = VelocityDistance=T1\frac{\text{Velocity}}{\text{Distance}} = T^{-1}

Thus, the dimensional formula of viscosity is: ML1T1ML^{-1}T^{-1}

➡ Matches with I.

 

D) Gravitational Constant (G)

From Newton’s Law of Gravitation:

F=Gm1m2r2F = G \frac{m_1 m_2}{r^2}

Rearranging for GG:

G=Fr2m1m2G = \frac{F r^2}{m_1 m_2}

Substituting Force (F=MLT2F = MLT^{-2}) and mass (MM):

G=MLT2×L2M×MG = \frac{MLT^{-2} \times L^2}{M \times M} =M1L3T2= M^{-1}L^3T^{-2}

➡ Matches with III.

 

Step 2: Matching List-I with List-II

List-I (Physical Quantity)List-II (Dimensional Formula)
A) Young’s ModulusII) ML1T2ML^{-1}T^{-2}
B) TorqueIV) ML2T2ML^2T^{-2}
C) Coefficient of ViscosityI) ML1T1ML^{-1}T^{-1}
D) Gravitational ConstantIII) M1L3T2M^{-1}L^3T^{-2}

Final Answer:

AII, BIV, CI, DIII\mathbf{A \to II, \quad B \to IV, \quad C \to I, \quad D \to III}

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring