Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Match the Column I with Column II

 Column-I Column-II         
PThe coordinates of a point on the line x=4y+5,z=3y6  at a distance 3 from the point (5,  3,  6) is/are1(1,2,0)
QThe plane containing the lines x23=y+35=z+57 and parallel to i^+4j^+7k^  has the point2(5,0,6)
RA line passes through two points A(2,3,1) and  B(8,1,2). The coordinates of a point on this line nearer to the origin and at a distance of 14 units from A is/are3(2,5,7)
SThe coordinates of the foot of the perpendicular from the point  (3,1,11) on the line x2=y23=z34 is/are4(10,7,7)

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

P-2;   Q-1;   R-4;   S-3

b

P-1;   Q-3;   R-4;   S-2

c

P-2;   Q-1;   R-1;   S-3

d

P-1;   Q-2;   R-3;  S-4

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

1)  aq;bp;cs;dr
a. The given line is x=4y+5,z=3y-6
or  x54=y,z+63=y
or  x54=y1=z+63=λ
(say)
Any point on the line is of the form  (4λ+5,λ3λ6).
The distance between  (4λ+5,λ,3λ6) and (5,  3,6) is 3 units (given). Therefore (4λ+55)2+(λ3)2+(3λ6+6)2=9
or  16λ2+λ2+96λ+9λ2=9

or  26λ26λ=0

or λ=0,3/13

The point is (5,0,6).
2)  The equation of the plane containing the lines  x23=y+35=z+57 and parallel to  i^+4j^+7k^ is  x2y+3z+5147357=0

or   x2y+z3=0
Point  (1,2,0) lies on this plane.

3) The line passing through points A(2,3,1) and B(8,1,2) is  x282=y+31+3=z+12+1 or  x26=y+32=z+13=λ (say).
Any point on this line is of the form P(6λ+2,  2λ3,3λ1), whose distance from point A(2,3,1) is 14 units. Therefore, PA=14
or  PA2=(14)2

(6λ)2+(2λ)2+(3λ)2=196 or 49λ2=196 or λ2=4 or λ=±2

Therefore, the required points are  (14,1,5) and (10,77). The point nearer to the origin is  (14,1,5).
4)  Any point on line  AB,  x2=y23=z34=λ is  M(2λ,3λ+2,4λ+3). Therefore, the direction ratios of PM  are 2λ3,3λ+3  and  4λ8.
Question Image

But  PMAB

 2(2λ3)+3(3λ+3)+4(4λ8)=0 4λ6+9λ+9+16λ32=0 29λ29=0

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring