Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Match the definite integrals in Column – I with their values in Column – II.

 Column – I Column – II 
A)0π2f(sin2x).sinxdxP)π0π2f(cosx)dx
B)0π2f(sin2x).cosxdxQ)0π42f(cos2x).cosxdx
C)0πx.f(sinx)dxR)127π49π4f(cos2x).cosxdx
D)0π2x.f(sin2x)dxS)π40π2f(cosx)dx

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

A  QR; B  QR; C  P; D  S 

b

A  QR; B  QR; C  S; D  P

c

A  P; B  S; C  QR; D  QR

d

A  PQ; B  QR; C  S; D  R

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

A)  I=0π2f(sin2x)sinxdx..........(1)     =0π2f(sinπ2x)cosxdx=0π2f(sin2x)cosxdx..........(2)      2I=0π2f(sin2x){sinx+cosx}dx       I=120π2f(sin2x)2cos(xπ4)dx=120π2f(sin2x)cos(xπ4)dx let  xπ4=tdx=dt I=12(π4)π4f(cos2t)costdt=20π4f(cos2t)costdt =122π(π/4)2π+(π/4)f(cos2t)costdt=27π49π4f(cos2t)costdt[Since 2π is Period]

C)  I=0πxf(sinx)dxI=0π(πx)(sinx)dx      2I=0πxf(sinx)dxI=π20πf(sinx)dx       I=0π2f(sinx)dx=0π2f(cosx)dx

D)  I=0π2x.f(sin2x)dx=0π2(π2x)f(sin2x)dx        2I=0π2π2f(sin2x)dxI=0π2π4f(sin2x)dx       put  2x=t       I=0ππ4f(sint)dt2=π80πf(sint)dt        =π40π2f(sint)dt=π40π2f(cost)dt

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring