Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Match the following

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

The postion vectors of vertices of ABC are a¯, b¯, c¯ and a¯a¯=b¯b¯=c¯c¯=3, [a¯,b¯,c¯]=0 , the postion vector of the orthocentre of ABC is

,

If a¯, b¯, c¯ are coplanar vectors and a¯ is not parallel to b¯ then {(c¯×b¯)(a¯×b¯)}a¯+{(a¯×c¯)(a¯×b¯)}b¯ is equal to

,

Let x¯,y¯ and z¯ be unit vectors such that x¯+y¯+z¯=a¯, x¯×(y¯+z¯)=b¯, (x¯×y¯)×z¯=c¯, a¯x¯=32, a¯y¯=74 and |a¯|=2 then x¯=

,

Let a¯, b¯ and c¯ be three non–zero vetors, no two of
which are collinear. If the vector 3a¯+7b¯ is collinear
with  c¯ and 3b¯+2c¯ is collinear with a¯, then 21b¯+14c¯= 

b

1/3(3a¯+4b¯+8c¯)

,

-9a¯

,

{(a¯×b¯)(a¯×b¯)}c¯

,

a¯+ b¯+ c¯

answer is , , A, .

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

(A) |a¯|=|b¯|=|c¯|=3circumcentre ABC is 0 centroid =ob¯=a¯+b¯+c¯3

Centroid divides OS¯ in the ratio 2: 1

 (C) x¯+y¯+z¯=a¯

a¯x¯+a¯y¯+a¯z¯=|a¯|2=4

32+74+a¯z¯=4a¯z¯=34

x¯(x¯+y¯+z¯)=x¯a¯=32

x¯y¯+x¯z¯=12 etc. 

(D) 3a¯+7b¯=λc¯ (1)

3b¯+2c¯=μa¯ (2)

(1)×3(2)×7

9a¯14c¯=3λc¯7μa¯

9=7μ &14=3λ

λ=143 and μ=97

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring