Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Match the following

           

Column – I

 

Column – II

(A)20π2(sinx)cosxcosxcotx-logsinxsinxdx(p)2
(B)Area bounded by 4y2=x and x1=5y2(q)1
(C)Cosine of the angle of intersection of curvesy=3x1logx and y=xx1  is(r)6ln3
(D)Let dydx=6x+y where  y(0)=0 then value of y  when x+y=12 is(s)43

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

(A)s,(B)p,(C)q,(D)r

b

(A)q,(B)r,(C)s,(D)p

c

(A)r,(B)s,(C)p,(D)q

d

(A)p,(B)s,(C)q,(D)r

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

(A)       0π2(sinx)cosx(cosxcotxlog(sinx)sinx)dx

01du Where (sinx)cosx=u=1

(A)(p)

(B)      

Solving y2=14x and y2=15(x1), we get intersection points as (4,±1)

 Required area =11[(15y2)+4y]dy=201(1y2)dy=43, (B)(s)

(C) By inspection, the point of intersection of two curves y=3x1logx and y=xx1 is (1,0)

For first curve dydx=3x1x+3x1log3logx

(dydx)(1,0)=1=m2

m1=m2 Two curves touch each other

 angle between them is 0°

cosθ=1,

(C)(q)

(D) dydx=6x+6dxdy16=y6

 Solution is x(I.F)=(y6(I.F))dy+c

xey6=yey66ey6+c

ey6(x+y+6)=c

x+y+6=cey6

x+y+6=6ey/6                    (y(0)=0)

18=6ey/6                                  (using x+y=12)

y=6ln3(D)(r)

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring