Q.

Match the following

 Column – I Column – II
(A)If the function y=e4x+2ex is a solution of differential equation d3ydx313dydxy=k then the value of k/3 is(p)3
(B)Number of straight lines which satisfy the differential equation dydx+x(dydx)2y=0 is(q)4
(C)If real value of m for which the substitution y=um will transform the differential equation 2x4ydydx+y4=4x6 into homogeneous then the value of 2m is(r)2
(D)If the solution of differential equation x2d2ydx2+2xdydx=12y is y=Axm+Bxn  then |m+n| is(s)1

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

Ar,Bq,Cp,Ds

b

Ap,Bq,Cr,Ds

c

Aq,Br,Cp,Ds

d

As,Br,Cp,Dq

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

A)        y=e4x+2ex; Find y',y",y'" 

                        Consider d3ydx313dydxy=12;

                                    K=12;K3=123=4

           

B)        Let y=mx+c;dydx+x(dydx)2y=0;

            m+xm2=mx+c;m=c         

comparing like terms m=m2;m=0,1

C)        y=um;dydx=mum1dudx;

            2x4ydydx+y4=4x6;dudx=4x6u4m2x4mu2m1

            Homogeneous 4m=6;m=6/4=3/2;2m=3

D)        y=Axm+Bxn;y=Amxm1nBxn1

            y2=Am(m1)xm2+n(n+1)Bxn2

            x2y2+2xy1=12y

            Am(m1)xm+n(n+1)Bxn+2Amxm2nxn

            =12(Axm+Bxn);m2m12=0;m=4,3;

            n(n+1)B2nB=12B

            n2n12=0;n=4,3;|m+n|=|4+3|=1

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Match the following Column – I Column – II(A)If the function y=e4x+2e−x is a solution of differential equation d3ydx3−13dydxy=k then the value of k/3 is(p)3(B)Number of straight lines which satisfy the differential equation dydx+x(dydx)2−y=0 is(q)4(C)If real value of m for which the substitution y=um will transform the differential equation 2x4ydydx+y4=4x6 into homogeneous then the value of 2m is(r)2(D)If the solution of differential equation x2d2ydx2+2xdydx=12y is y=Axm+Bx−n  then |m+n| is(s)1