Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Match the following 
Where column 2 denotes number of solutions in [0,2π] and column 3 denotes general solution
 

Column – 1Column – 2Column – 3
(I) If maxxR{5sinx+3sin((xα))}=7 ,then the set of possible value of α is(i) 0(P) 2nπ+3π4,nz
(II) xnπ2 and (cosx)sin2x3sinx+2=1(ii) 1(Q) 2nπ±π3,nz
(III) (sinx)+21/4cosx=0(iii) 2(R) 2nπ+cos1(13),nz
(IV) log5tanx=(log54)(log4(3sinx))(iv) 3(S) no solution

Which of the following combination is CORRECT?

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

(I) (iii) (P)

b

(I) (iii) (Q)

c

(III) (ii) (Q)

d

(III) (iv) (Q)

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Conceptual

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Match the following Where column 2 denotes number of solutions in [0,2π] and column 3 denotes general solution Column – 1Column – 2Column – 3(I) If maxx∈R{5sinx+3sin((x−α))}=7 ,then the set of possible value of α is(i) 0(P) 2nπ+3π4,n∈z(II) x≠nπ2 and (cosx)sin2x−3sinx+2=1(ii) 1(Q) 2nπ±π3,n∈z(III) (sinx)+21/4cosx=0(iii) 2(R) 2nπ+cos−1(13),n∈z(IV) log5tanx=(log54)(log4(3sinx))(iv) 3(S) no solutionWhich of the following combination is CORRECT?