Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Match the following

Column - IColumn - II
A)If f(x)={sin{x},x<1cosx+a;x1  where {.} denotes the fractional part function, such that  f(x) is continuous at x=1.  If |k|=a2sin(4π)4  then k  isp)1
B)If the function f(x)=(1cos(sinx))x2  is continuous at x=0,  then f(0)  isq)0
C)f(x)=[x,xQ1x,xQ,  then the values of x  at whichf(x)  is continuousr)1
D)If f(x)=x+{x}+[x],  where [x]  and {x}  represents integral and fractional part of  x, then the values of   at which f(x)  is discontinuouss)12

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

A-pr, B-s, C-s, D-pqr

b

A-rs, B-pqrs, C-p, D-r

c

A-p, B-s, C-pq, D-prs 

d

A-r, B-p, C-q, D-s

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

A)  limh0sin{1h}=cos1+a
     limh0sin{1h}cos1=a    a=sin1cos1
 Now  |k|=sin1cos12(sin1.12cos1.12)=1
 k=±1
B)  f(0)=limx02sin2(sinx2)x2(sinx2)2×(sinx2)2
      f(0)=12
C) Function should  have same rule for  Q&Q'
 x=1xx=12
D)  f(x)=x+{x}+[x]
x  is continuous at  xR
Check x=I  (where   is integer), 
 f(I+)=2I+1 f(I)=2I1
 so f(x)  is discontinuous at every integer
i.e., 1, 0, - 1  

 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring