Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Matrix Matching : Integrals and Values 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

0π14sin2x.dx

,

0πx4sin2x.dx

,

0πsinx4sin2x.dx

,

0πxsinx4sin2x.dx

b

π263

,

π33

,

π243

,

π23

answer is D, C, B, A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Option (A) 0π14sin2x.dx  I=0π14sin2x.dx=0π14(1cos2x2).dx

0π181+cos2x2.dx=0π27+cos2x.dx  

=0π27+(1tan2x1+tan2x).dx=0π2[1+tan2x]8+6tan2x  dx

=0π1+tan2x4+3tan2x.dx=20π21+tan2x4+3tan2xdx=20π2sec2x4+3  tan2x.dx

Let tanx=t     x=0     t=0

sec2xdx=dt x=π2t=

=  20dt4+3t2  =  2×13   0dt(23)2+t2

=23  ×123×(Tan1(t23))0 

=13  ×(π20)  =π23

Option (B) : I=0πx4sin2x.dx=  0π(πx)4sin2x.dx=0ππ4sin2x.dx  0πx4sin2x.dx

=0ππ4sin2x.dxI

2I=π(π23)I=π243

Option  ( C ) : 0πsinx4sin2x.dx

I=  0πsinx4sin2x.dx=  0πsinx3+cos2xdx

=  1(3)  Tan1(t3)1

=13  (Tan1(13)Tan1(13))

=13  (π6    π6)=π33  =π33

0π4sinx4sin2x.dx=π33

Option (D) :

I=0πxsinx4sin2x  =0π(πx)sin(πx)4sin2=0ππsinx4sin2x0πxsinx4sin2x

I=π0πsinx4sin2xI  2I=π0πsinx4sin2x

  2I=π×π33     I=π263

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring