Q.

Molar heat capacity of an ideal gas varies as , C=Cv + αT , C=Cv + βT and C=Cv + aP , where α, ß, and a are constants. Find the equations of the process for an ideal gas in terms of the variables T and V.

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

Va=nT

b

V=anT

c

Ve-(αT / R)=const

d

T.e(R / βV)= const

answer is A, B, C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

(i) Form first law of thermodynamics, dQ =  dU + dW   dQ = C dT =  Cv dT + PdV  

C=dQdT=Cv + PdVdT=Cv + RTVdVdT ......(1)

since it varies as, C=Cv + αT......(2)

on comparing expression (1) and (2),

we have αT=RTVdVdT  αR dT = dVV.......(3)

on integrating eqn. (3), we have ln V - aTR=ln k or V =k eαT / R or Ve-(αT / R)= constant ....(4)

Eqn. (4) is the equation of process.

(ii) We have C=Cv + RTVdVdT

Comparing it with the given molar heat capacity, C=Cv + βV.Hence , we have RTVdVdT=βV  dVV2=βRdTT......(5) 

Above equation integration yields -1V=βRlog T + constant

log T + RβV= another constant...(6)

or Te(R / βV) = another constant ......(7)

(iii) On comparing C=Cv + RTVdVdT 

or C=Cv + aP we have RTVdVdT=aP

since PV=RT for one mole , hence

dVdT=a or V=aT or V=anT for n moles

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon