Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Molar heat capacity of an ideal gas varies as , C=Cv + αT , C=Cv + βT and C=Cv + aP , where α, ß, and a are constants. Find the equations of the process for an ideal gas in terms of the variables T and V.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

Va=nT

b

V=anT

c

Ve-(αT / R)=const

d

T.e(R / βV)= const

answer is A, B, C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

(i) Form first law of thermodynamics, dQ =  dU + dW   dQ = C dT =  Cv dT + PdV  

C=dQdT=Cv + PdVdT=Cv + RTVdVdT ......(1)

since it varies as, C=Cv + αT......(2)

on comparing expression (1) and (2),

we have αT=RTVdVdT  αR dT = dVV.......(3)

on integrating eqn. (3), we have ln V - aTR=ln k or V =k eαT / R or Ve-(αT / R)= constant ....(4)

Eqn. (4) is the equation of process.

(ii) We have C=Cv + RTVdVdT

Comparing it with the given molar heat capacity, C=Cv + βV.Hence , we have RTVdVdT=βV  dVV2=βRdTT......(5) 

Above equation integration yields -1V=βRlog T + constant

log T + RβV= another constant...(6)

or Te(R / βV) = another constant ......(7)

(iii) On comparing C=Cv + RTVdVdT 

or C=Cv + aP we have RTVdVdT=aP

since PV=RT for one mole , hence

dVdT=a or V=aT or V=anT for n moles

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring