Q.

OABC is a tetrahedron in which O is the origin and position vector of points A, B, C are i^+2 j^+3 k^, 2 i^ +α j^ + k^ and i^ + 3 j^ +2 k^   respectively. A value of ‘α ’ for which shortest distance between OA and BC is 32

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

37

b

-3

c

97

d

-37

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

Unit vector n^ perpendicular to OAand CBis in n^ =3α-7 i^-4 j^+5-α k^3α-72+16+5-α2 32=BA  n^α=97or 3

OA=i^+2 j^+3 k^,OB=2 i^+α j^+k^ and OC=i^+3 j^+2 k^BA=OAOB=i^+(2α) j^+2 k^,CB=OBOC=i^+(α3) j^k^, and  Unit vector ( n^ ) perpendicular to OA and CB is n^=CB×OA|CB×OA|=3α-7 i^-4 j^+5-α k^3α-72+16+5-α2 As, CB×OA=i^j^k^1α31123=(3α7)i^4j^+(5α)k^Shortest distance=d=|BAn^|32=(73a)4(2α)+2(5α)(3α7)2+(16)+(5α)232=|α+9|10α252α+90squaring and simplifying7α230α+27=0(7α9)(α3)=0α=97,3 

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon