Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

On dividing x3-3x2+x+2 by a polynomial g(x)  the quotient and remainder were x-2 and -2x+4 respectively. Find g(x) .


see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

g(x) =x2-x+1

b

gx=x2+x+1

c

 gx=x2-x-1

d

gx=x2+x-1 

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Concept- Use the formula dividend=divisor×quotient+remainder to determine g(x) .  This shall help us solve the given problem.
Euclid division lemma or Euclid division algorithm:  This algorithm states that, if we have two positive integers aa and bb, then there exist unique integers q and r which satisfies the condition a=bq+r where 0rb.
Now, let us come to the question.
Since, dividend=divisor×quotient+remainder
Therefore,
x3-3x2+x+2=g(x) ×(x-2) +4-2x x3-3x2+x+2-4+2x=g(x) ×(x-2)  x3-3x2-3x-2=g(x) ×(x-2)  gx=x3-3x2-3x-2x-2 Step 1: So, write x-2 three times with some space between all of them.
(x-2)  (x-2)  (x-2) 
Step 2: Get the first term of numerator by multiplying x2 with x-2.
x2(x-2)  (x-2)  (x-2) 
Step 3: Balancing the terms with the help of mathematical operations
=x2(x-2)  -x(x-2)  +1(x-2) 
=x2(x-2) -x(x-2) +1(x-2) 
Step 4: Taking (x-2)  common.
(x-2) (x2-x+1) 
Thus, g(x) =x2-x+1.
Hence, the correct option is 1) g(x) =x2-x+1
 
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring