Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

p,q and r are three mutually perpendicular vectors of the same magnitude. If vector x satisfies the equation 

p×((x-q)×p)+q×((x-r)×q)                                          +r×((x-p)×r)=0 , 

 

then x is given by

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

12(p+q-2r)

b

12(p+q+r)

c

13(2p+q-r)

d

13(p+q+r)

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

As p,q and r are three mutually perpendicular vectors of same magnitude, so let us consider 

p=aiˆ,q=ajˆ,r=akˆ

Also let  x=x1iˆ+y1jˆ+z1kˆ

Given that x satisfies the equation

 p×[(x-q)×p]+q×[(x-r)×q]  +r×[(x-p)×r]=0

Now p×[(x-p)×p]=p×[x×p-q×p]

=p×(x×p)-p×(q×p)

=(pp)x-(px)p-(pp)q+(pq)p

=a2x-a2x1iˆ-a3jˆ+0

Similarly, q×[(x-r)×q]=a2x-a2y1jˆ-a3kˆ

And r×[(a-p)×r]=a3x-a2z1kˆ-a3iˆ

Substituting values in the equation, we get

3a2x-a2x1iˆ+y1j7+z1kˆ-a2(aiˆ+ajˆ+akˆ)=0

Or 3a2x-a2x-a2(p+q+r)=0

Or 2a2x=(p+q+r)a2

Or x=12(p+q+r)

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring