Q.

Prove that the parallelogram circumscribing a circle is rhombus.

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given that,  

Parallelogram ABCD  is circumscribing the circle and its sides are touching the circle at PQR and S.

Question Image

 

AP and AS  are tangent to the circle from the external point A.

BP and BQ  are tangent to the circle from the external point B.

CQ and CR are tangents to the circle from the external point C.

DR  and DS  are tangents to the circle from the external point D.

We know that tangents drawn to a circle from an external point are equal. 

AP=AS.....(i) 

BP=BQ......(ii) 

CQ=CR.....(iii) 

DR=DS.....(iv)    

Adding

 (1), (2), (3) and (4) we get,  

AP+BP+CR+DR=AS+BQ+CQ+DS

⇒(AP+BP)+(CR+DR)=(AS+DS)+(BQ+CQ)

AB+CD=AD+BC

SinceABCD is a parallelogram then AB=CD and BC=AD

AB+AB=BC+BC

⇒2AB=2BC

Thus AB=BC=CD=AD

It is a rhombus 

The parallelogram circumscribing a circle is rhombus. 

Hence proved 

 

 

 

 

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon