Q.

Prove the following identities, where the angles involved are acute angles for which the
expressions are defined.

(i) (cosec θ – cot θ)1-cosθ1+cosθ

(ii) cosA1+sinA + 1+sinAcosA = 2 sec A

(iii)tanθ1-cotθ + cotθ1-tanθ= 1 + sec θ cosec θ

     [Hint: Write the expression in terms of sin θ and cos θ]

(iv) 1+secAsecA =sin2A1-cosA  

     [Hint: Simplify L.H.S. and R.H.S. separately]

(v) cosA-sinA+1cosA+sinA-1= cosec A + cot A, using the identity cosec2A = 1+cot2A.

(vi)1+sinA1-sinA=secA+tanA

(vii) (sinθ-2sin3θ)(2cos3θ-cosθ) = tan θ
(viii) (sin A + cosec A)+ (cos A + sec A)2 = 7+tan2A+cot2A
(ix) (cosec A – sin A)(sec A – cos A) = 1tanA+cotA
[Hint: Simplify L.H.S. and R.H.S. separately] 

(x) 1+tan2A1+cot2A = (1-tanA1-cotA)2 = tan2A

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

(i) (cosec θ – cot θ)1-cosθ1+cosθ

L.H.S. = (cosec θ – cot θ)2

= (cosec2θ + cot2θ – 2cosec θ cot θ)

Now, apply the corresponding inverse functions and equivalent ratios to simplify

= (1sin2θ + cos2θsin2θ – 2cos θsin2θ)

1+cos2θ-2cosθ1-cos2θ

(1-cosθ)2(1-cosθ)(1+cosθ)

(1-cosθ) (1+cosθ) = R.H.S.

Hence proved.

(ii) cosA1+sinA + 1+sinAcosA = 2 sec A

L.H.S. =  cosA1+sinA + 1+sinAcosA

=cos2A+(1+sinA)2(1+sinA)cosA

cos2A+sin2A+1+2sinA(1+sinA)cosA 

Since cos2A + sin2A = 1, we can write it as

2+2sinA(1+sinA)cosA 

2(1+sinA)(1+sinA)cosA 

=2cosA = 2 sec A = R.H.S.

Hence proved.

(iii)tanθ1-cotθ + cotθ1-tanθ= 1 + sec θ cosec θ

L.H.S. =tanθ1-cotθ + cotθ1-tanθ

We know that tan θ =sinθcosθ

cot θ = cosθsinθ

Now, substitute it in the given equation to convert it into a simplified form.

=sinθcosθ1-cosθsinθcosθsinθ1-sinθcosθ

sinθcosθsinθ-cosθsinθ +cosθsinθcosθ-sinθcosθ

sin2θcosθ(sinθ-cosθ) + cos2θsinθ(cosθ-sinθ)

=sin2θcosθ(sinθ-cosθ) – cos2θsinθ(sinθ-cosθ)

1(sinθ-cosθ)(sin2θcosθ-cos2θsinθ)

1(sinθ-cosθ)(sin3θ-cos3θcosθsinθ)

(sinθ-cosθ)(sin2θ+cos2θ+sinθcosθ)(sinθ-cosθ)sinθcosθ

(1+sinθcosθ)sinθcosθ

1sinθcosθ + 1

= 1 + sec θ cosec θ = R.H.S.

Hence proved.

(iv) 1+secAsecA =sin2A1-cosA  

L.H.S. = 1+secAsecA

1+1cosA1cosA

1+cosAcosA1cosA= cos A + 1

Now, R.H.S. = sin2A1-cosA

We know that sin2A = (1 – cos2A), we get

1-cos2A1-cosA

(1-cosA)(1+cosA)1-cosA

= cos A + 1

L.H.S. = R.H.S.

Hence proved.

(v) cosA-sinA+1cosA+sinA-1 = cosec A + cot A, using the identity cosec2A = 1+cot2A.

L.H.S. = cosA-sinA+1cosA+sinA-1

Divide the numerator and denominator by sin A, and we get

=cosA-sinA+1sinAcosA+sinA-1sinA

We know that cosAsinA = cot A and1sinA = cosec A

=cotA-1+cosecAcotA+1-cosecA

=cotA-cosec2A+cot2A+cosecAcotA+1-cosecA(using cosec2A – cot2A = 1)

=(cotA+cosecA)-(cosec2A-cot2A)cotA+1-cosecA

(cotA+cosecA)-(cosecA-cotA)(cosecA+cotA)cotA+1-cosecA

=(cotA+cosecA)1-cosecA+cotAcotA+1-cosecA

= cosec A + cot A=R.H.

Hence proved.

(vi)1+sinA1-sinA=secA+tanA

L.H.S.=1+sinA1-sinA

First, divide the numerator and denominator of L.H.S. by cos A,

Ncert solutions class 10 chapter 8-12

We know that 1cosA= sec A and sinAcosA = tan A, and it becomes,

secA+tanAsecA-tanA

Now using rationalisation, we get

Ncert solutions class 10 chapter 8-13

=secA+tanA1

= sec A + tan A = R.H.S.

Hence proved.

(vii) (sinθ-2sin3θ)(2cos3θ-cosθ) = tan θ

L.H.S. = (sinθ-2sin3θ)(2cos3θ-cosθ)

sinθ(1-2sin2θ)cosθ(2cos2θ-1)

We know that sin2θ = 1-cos2θ

sinθ(1-2(1-cos2θ))cosθ(2cos2θ-1)

sinθ(2cos2θ-1)cosθ(2cos2θ-1)

= tan θ = R.H.S.

Hence proved.

(viii) (sin A + cosec A)+ (cos A + sec A)2 = 7+tan2A+cot2A

L.H.S. = (sin A + cosec A)+ (cos A + sec A)

          = (sin2A + cosec2A + 2 sin A cosec A) + (cos2A + sec2A + 2 cos A sec A)

= (sin2A + cos2A) + 2 sin A(1sinA) + 2 cos A(1cosA) + 1 + tan2A + 1 + cot2A

= 1 + 2 + 2 + 2 + tan2A + cot2A

= 7+tan2A+cot2A = R.H.S.

Hence proved.

(ix) (cosec A – sin A)(sec A – cos A) = 1tanA+cotA.

L.H.S. = (cosec A – sin A)(sec A – cos A)

Now, substitute the inverse and equivalent trigonometric ratio forms.

= (1sinA – sin A)(1cosA – cos A)

1-sin2AsinA[1-cos2AcosA]

cos2AsinA×(sin2AcosA)

= cos A sin A

Now, simplify the R.H.S.

R.H.S. = 1tanA+cotA

=1sinAcosA+cosAsinA

1sin2A+cos2AsinAcosA

= cos A sin A

L.H.S. = R.H.S.

Hence proved.

(x) 1+tan2A1+cot2A = (1-tanA1-cotA)2 = tan2A

L.H.S. = 1+tan2A1+cot2A

Since the cot function is the inverse of the tan function,

1+tan2A1+1tan2A

=1+tan2A1+tan2Atan2A

Now cancel the 1+tan2A terms, and we get

= tan2A

1+tan2A1+cot2A = tan2A

Similarly,

(1-tanA1-cotA)2 = tan2A

Hence proved.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Prove the following identities, where the angles involved are acute angles for which theexpressions are defined.(i) (cosec θ – cot θ)2 = 1-cosθ1+cosθ(ii) cosA1+sinA + 1+sinAcosA = 2 sec A(iii)tanθ1-cotθ + cotθ1-tanθ= 1 + sec θ cosec θ     [Hint: Write the expression in terms of sin θ and cos θ](iv) 1+secAsecA =sin2A1-cosA       [Hint: Simplify L.H.S. and R.H.S. separately](v) cosA-sinA+1cosA+sinA-1= cosec A + cot A, using the identity cosec2A = 1+cot2A.(vi)1+sinA1-sinA=secA+tanA(vii) (sinθ-2sin3θ)(2cos3θ-cosθ) = tan θ(viii) (sin A + cosec A)2 + (cos A + sec A)2 = 7+tan2A+cot2A(ix) (cosec A – sin A)(sec A – cos A) = 1tanA+cotA[Hint: Simplify L.H.S. and R.H.S. separately] (x) 1+tan2A1+cot2A = (1-tanA1-cotA)2 = tan2A