Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Show that the equation of the normal at P(θ) on the hyperbola x2a2y2b2=1 is axsecθ+bytanθ=a2+b2

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given hyperbola x2a2y2b2=1

Let P(θ)=(asceθ,btanθ) be any point on hyperbola Now equation of tangent at P(θ) is xasecθ-ybtanθ=1 slope of tangent=bsecθatanθ
Slope of the normal at P(asecθ,btanθ) on the hyperbola =atanθbsecθ
the equation of normal at P is
 ybtanθ=atanθbsecθ(xasecθ)btanθ(ybtanθ)=asecθ(xasecθ)axsecθ+bytanθ=a2+b2

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon