Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Show that the pair of straight lines
i) 6x2 – 5xy – 6y2 = 0 and 6x2–5xy – 6y2+ x + 5y–1= 0 forms a square.
ii) 3x2 + 8xy – 3y2 = 0 and 3x2+ 8xy – 3y2 + 2x – 4y – 1 = 0 form a square

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given pair of lines are
6x25xy6y2=0 ...(1) 6x25xy6y2+x+5y1=0 ...(2)
In (1) and (2) coefficient of x2 + coefficient y2Question Image
= 6 – 6 = 0
Equation (1) represents a pair of perpendicular lines passing through origin & equation (2) represents a pair of perpendicular  lines parallel to (1)
(1) and (2) form a rectangle.let OABC be the  rectangle such that (1) represents OA¯,OC¯ and (2) represents BA¯,BC¯
 Equation  of AC¯ is (2)(1)=0
i.e x + 5y – 1 = 0
 slope of AC¯ is 15m=ab
comparing equation (2)
with ax2+2hxy+by2+2gx+2by+c=0
we get
a=6,b=6,c=1 and 2h=5h=52, 2g=1g=12, 2f=5f=52 
Now B = point of intersection of (2)
=hfbgabh2,ghafabh2B=52×52(6)126(6)(5/2)2,12×526×526(6)(5/2)2=254+336254,5415-36-254)=25+1214425,56014425=13169,65169B=113,513
 Slope of OB¯ is =5/1301/130=5
 (Slope of AC¯ ) (slope of OB¯ ) =15×5=1 AC¯OB¯
diagonals of the rectangle OABC are perpendicular OABC is a square
ii) Given pair of lines are 3x2+8xy3y2=0 ...(1)
In (1) and (2) coefficient of x2 + coefficient of y2
= 3 – 3 = 0
Equation (1) represents a pair of perpendicular lines passing through origin and equation (2) represents a pair perpendicular of lines parallel to (1)
 (1) and (2) forms a rectangle 
Let OABC be the rectangle such that (1) represents OA¯,OC¯ , (2) represents BA¯,BC¯
 Equation to AC¯ is (2)(1)=0
2x – 4y – 1 = 0
 Slope of AC¯=24=12 [ slope =a/b]
Comparing equation (2) with
ax2+2hxy+by2+2gx+2fy+c=0
 we get a=3,b=3,c=1,2h=8h=4
2g=2g=1 ;2f=4f=2
Now B = point of intersection of (2)
=hfbgabh2,ghafabh2=4×2(3)(1)3(3)(4)2,1(4)3(2)3(3)(4)2=8+3916,4+6916=525,1025=15,25
 Slope of OB is =2501/50=2
( slope of AC)( slope of OB)=12×2=1
ACOB
 diagonals of the rectangle OABC are perpendicular  the given lines form a square

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring