Q.

Show that 49n+16n1 is divisible by 64

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let S(n) be the given statement

put n = 1

=49n+16(n)1=491+16(1)1

=64 is divisible by 64

S(1) is true

Assume that S(k) is true for some kN

49k+16k1=64m (where m is an Integer)

49k=64m16k+1

to prove S(n) is true for n=k+1

49k+1+16(k+1)1

=49k49+16k+161

=(64m16k+1)49+16k+161 (from (1))

=64m(49)16k(49)+49+16k+15

=64m(49)49(16k)+16k+64

=64m(49)16k(491)+64

=64m(49)16k(48)+64

=64m(49)16k(4.12)+64

=64m(49)64k(12)+64

=64[49m12k+1] is divisible by 64

S(k+1) is true

By the principle of finite mathematical induction
S(n) is true for all nN .

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon