Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Solution of the equation dydx+1xtany=1x2tanysiny is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

2x = siny (1+2cx2)

b

2x = siny (3+2cx2)

c

x = siny (1+2cx2)

d

3x = siny (1+2cx2)

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given the differential equation, dydx+1xtany=1x2tanysiny

Dividing both sides of the given equation by

Then, cosecy cotydydx+1xcosecy=1x2.

let, Cosec y =t   ......( 1 )

Differentiate the equation (1), we have.

dtdx=-cosecy cotydydx

so, we have.

dtdx-tx=-1x2

the integration factor is:

 I.f. =e-1xdx =e-ln(x)=1x.  So, 1x(t)=1x-1x2dx. tx=-1x3dx tx=-x-3+1-3+1+C' tx=x22+c' then, tx=1+cx22x2  Here,  2c'=c Therfore, cosecx=1+cx22x2 1siny=1+cx22x2x=siny1+cx2

OR, the integration factor is:   I.f. =e-1xdx =elogx-1=x-1  so, tx-1=x-1-1x2dx+C. tx=-x-2-2+C=12x2+C

cosecy=12x+cx then, we have.

2xsiny=1+2cx2

2x = siny (1+2cx2)

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring