Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Solve the differential equation is
dydx2xy1+x2=x2+2

OR

Solve the differential equation dy=cos x(2−ycosec x)dx, given that y=2, when x=π/2

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given differential equation is
dydx2x1+x2y=x2+2          .....(i)
This is a linear differential equation of the form dydx+Py=Q
with P=2x1+x2and Q=x2+2
 IF=e2xx2+1dx=e2xx2+1dx=elog x2+1=1x2+1
solution is y( IF )=Q( IF )dx+C,we get 
y1x2+1=x2+21x2+1dx+Cyx2+1=x2+1+1x2+1dx+Cyx2+1=1dx+1x2+1dx+Cyx2+1=x+tan1 x+C y=xx2+1+tan1 xx2+1+Cx2+1

OR

Given differential equation is
dy=cos x(2ycosec x)dxdydx=cos x(2ycosec x)=2cos xycosec xcos xdydx=2cos xycot xdydx+ycot x=2cos x
which is a linear differential equation of the form of
dydx+Py=Q
Here, P=cot x and Q=2cos x
Now, I.F=eFdx=ecot xdx=elog sin x=sin x
and the required solution is given by
yIF=(QIF)dx+Cysin x=2cos xsin xdx+Cysin x=sin 2xdx+C [sin 2θ=2sin θcos θ] ysin x=cos 2x2+C             ......(i)
Also, given y=2, when x=π2,, therefore we have
2sin π2=cos 2×π22+C 21=+12+C212=C 412=CC=32 
On putting the value of C in Eq. (i), we get
ysin x=12cos 2x+32

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring