Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Solve the equation x4+x3-16x2-4x+48=0 then the product of two of the roots being 6

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let α, β, γ, δ be the roots of 

x4+x3-16x2-4x+48=0 

Given αβ=6........1

S1=α+β+γ+δ=-1 S2=α+βγ+δ+αβ+γδ=-16 S3=α+βγδ+γ+δαβ=4 S4=αβγδ=48 From (1) 6γδ=48γδ=486=8 sub αβ, γδ values in S2 α+β, γδ values in S2 α+βγ+δ+6+8=-16 α+βγ+δ=-30 S1=α+β+γ+δ=-1 If α+β, γ+δ are roots then

x2-α+β+γ+δx+α+βγ+δ=0 x2--1x+-30=0 x2+x-30=0 x=-6          x=5 α+β=5           γ+δ=-6 αβ=5                γδ=8 If α,β are roots then x2-α+βx+αβ=0 x2-5x+6=0; x-3x-2=0 x=3, or x=2 α=3, β=2

γ, δ are roots then x2-γ+δx+γδ=0 x2+6x+8=0; x+4x+2=0 x=-4 or x=-2         γ=-4, δ=-2  The roots are 3, 2, -4, -2

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon