Q.

Solve the following equations by using Matrix inversion method

3x+y4z=0

x+2y+z=4

2xy+3z=8

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

The given system of equation can be written as AX=B

Where A=314121213,X=xyz,B=048

|A|=314121213=3(6+1)1(32)4(14)

=21+5+12=38

|A|0A1 exists 

cofactor of 3=(1)1+12113=6+1=7

cofactor of 1=(1)1+21123=(32)=5

cofactor of 4=(1)1+31221=14=3

cofactor of 1=(1)2+11413=(34)=+1

cofactor of 2=(1)2+23    42    3=9+8=17

cofactor of 1=(1)2+33121=(32)=5

cofactor of 2=(1)2+33121=(32)=5

cofactor of 1=(1)3+23411=(34)=1

cofactor of 3=(1)3+23112=6+1=7

AdjA=( cofactors of A)T=7531175917T

=7195171357

AX=BX=A1B

X=AdjAdetAB=1387195171357048

1380+4+720+68+80+20+56=138767676=222

X=222    xyz=222

x=2,y=2,z=2 is the solution for given system of equations

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon