Q.



State True or False.
The assertion tan θ 1 + cotθ + cot θ 1 - tanθ =1+secθcosecθ   , is correct for all acute angles.



see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

True

b

False 

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given equation is tan θ 1 + cotθ + cot θ 1 - tanθ =1+secθcosecθ  .
We start with LHS,
tanθ 1cotθ + cotθ 1tanθ sinθ cosθ 1 cosθ sinθ + cosθ sinθ 1 sinθ cosθ  
sinθ×sinθ cosθ sinθcosθ + cosθ×cosθ sinθ cosθsinθ sin 2 θ cosθ sinθcosθ cos 2 θ sinθ sinθcosθ  
Taking the LCM of denominators,
sin 3 θ cos 3 θ cosθsinθ sinθcosθ  
Using the identity a 3 b 3 = ab a 2 +ab+ b 2  , we get
sinθcosθ sin 2 θ+ cos 2 θ+sinθcosθ cosθsinθ sinθcosθ sin 2 θ+ cos 2 θ+sinθcosθ cosθsinθ  
We know the identity cos 2 θ+ sin 2 θ=1  ,
sinθcosθ+1 cosθsinθ sinθcosθ cosθsinθ + 1 cosθsinθ 1+ 1 cosθ 1 sinθ 1+secθcosecθ=RHS  
Since LHS = RHS, the assertion is true i.e., tan θ 1 + cotθ + cot θ 1 - tanθ =1+secθcosecθ   , is correct for all acute angles.
Therefore, the correct option is 1.
 
Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
State True or False.The assertion tan θ 1 + cotθ + cot θ 1 - tanθ =1+secθ⋅cosecθ   , is correct for all acute angles.