Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

State whether the given statement is true or false.


If a ΔABC ,has the coordinates of points A, B, and C as (3,2),(6,4) and (9,3) respectively, then the areas of ΔABG ,has the coordinates of points A, B, and C as (3,2),(6,4) and (9,3) respectively, then the areas of and ΔACD and is the same.


see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

True

b

False  

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

We have been given,
If the ΔABC has the coordinates of points A, B, and C as (3,2),(6,4) and (9,3) respectively, then the areas of ΔABG and ΔACD is the same.
Let the x1, x2,x3, y1,y2 and y3 are coordinates of vertices of ΔABC, then the centroid of a triangle is,
x 1 + x 2 + x 3 3 , y 1 + y 2 + y 3 3 Using the formula for centroid.
Substituting x1=3, x2=6, x3=9, y1=2, y2=4, and y3=3, in the formula,
G 3+6+9 3 , 2+4+3 3 G(6,3) Now, calculating the area of the triangles.
ar(ΔABG)=12x1y2-y3+x2y3-y1+x3y1-y2
Substituting x1=3, x2=6, x3=6, y1=2, y2=4, and y3=3, in the formula,
arΔABG=1234-3+63-2+62-4
arΔABG=12|3+6-12|
arΔABG=12|-3|
arΔABG=32
Area of triangle ACG,
ar(ΔACG)=12x1y2-y3+x2y3-y1+x3y1-y2
Substituting x1=3, x2=9, x3=6, y1=2, y2=3, and y3=3, in the formula,
arΔACG=1233-3+93-2+62-3
arΔACG=12|0+9-6|
arΔACG=12|3|
arΔACG=32
arΔACG=arΔABG=32 sq. unit
Therefore, the given statement is true.
Hence, option 1 is true.
 
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring