Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, find the sides of the two squares.

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let the sides of the two squares be x m and y m.

Therefore, their perimeter will be 4x and 4y, respectively

And the area of the squares will be x2 and y2, respectively.

Given,

4x – 4y = 24

x – y = 6

x = y + 6

Also, x+ y2 = 468

⇒ (6 + y2) + y2 = 468

⇒ 36 + y2 + 12y + y2 = 468

⇒ 2y2 + 12y  - 432 = 0

⇒ y2 + 6y – 216 = 0

⇒ y2 + 18y – 12y – 216 = 0

⇒ y(+18) -12(y + 18) = 0

⇒ (y + 18)(y – 12) = 0

⇒ y = -18, 12

As we know, the side of a square cannot be negative.

Hence, the sides of the squares are 12 m, and (12 + 6) m = 18 m.

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, find the sides of the two squares.