Q.

Suppose  f(x)  is a differentiable function g(x)   is twice differentiable function such that  f'(x)=g(x)  &  |f(x)|1  x[3,3]  . If further (f(0))2+(g(0))2=9.   Then which  of the following is/are true?

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

There exists some c, c  (3,3) such that  |f'(c)|23

b

There exists some d , d(3,3)  such that  f(d)+g'(d)=0 and gd0

c

Let  h(x)=(f(x))2+(g(x))2  and  h(x) attains its local maximum at  x=λ,  λ(3,3)  

d

There exists a value of  μμ(3,3)   such that  g(μ)g"(μ)<0

answer is A, B, C, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

h(x)=(f(x))2+(g(x))2   Using LMVT, for f(x)   in  (3,0)  c1(3,0)  f'(c1)=f(0)f(3)3 Since |f(x)|1 1f(0)1   &  1f(3)1  2f(0)f(3)2 23f(0)f(3)323 |f'(c1)|23 Now, there exists atleast one c(c1,c2)   such that h(x)  will attain its maximum at c   h'(c)=0 &h"(c)<0 h(c1)=(f(c1))2+(g(c1))21+49139  h'(x)=2f(x)f'(x)+2g(x)g'(x) =2f(x)g(x)+2g(x)g'(x) , (  f'(x)=g(x))  2g(x)(f(x)+g'(x))  h'(c)=02g(c)  (f(c)+g'(c))=0    f(c)=g'(c) h"(x)=2[f'(x)2+f(x)f"(x)+(g'(x))2+g(x)g"(x)]  =2[(g(x))2+f(x)g'(x)+(g'(x))2+g(x)g"(x)] , [  f'(x)=g(x) h"(c)<0   (g(c))2+f(c)g'(c)+(g'(c))2+g(c)g'(c)<0  f(c)=g'(c) (g(c))2(g'(c))2+(g'(c))2+g(c)g"(c)<0  g((c))2+g(c)g"(c)<0 g(c)  g"(c)<0. c(3,3) 

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon