Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Suppose a, b are two real numbers and f(n)=αn+βn. Let

Δ=31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)

If Δ=k(α1)2(β1)2(αβ)2, then k is equal to

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

α2β2

b

1

c

4αβ

d

9

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Δ=1+1+11+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4=1111αβ1α2β21111αβ1α2β2=Δ12

where Δ1=1111αβ1α2β2

Applying C3C3C2 and C2C2C1 we get

Δ1=1001α1βα1α21β2α2=(α1)(βα)11α+1β+α

=(α1)(β1)(βα)

Thus Δ=(α1)2(β1)2(αβ)2

 k=1

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring