Q.

The angle θ between two non-zero vectors a and b satisfies the relation cosθ=(a×i^)·(b×i^)+(a×j^)·(b×j^)+a'×k^·(b×k^) then the least value of |a|+|b|is equal to (where θ90° )

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

2

b

12

c

2

d

4

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given, cosθ=(a×i^)·(b×i^)+(a+j^)·(b×j^)+(a×k^)·(b×k^)     …(i)
Consider, (a×i^)·(b×i^)=[(a×i^)bi^]=((a×i^)×b)·i^

((a·b)i^)-(i^·b)a)i^=(a·b)(i^·i^)-(i^·b^)(a·i^)
=a·b-a1b1
 Similarly, (a×j^)·(b×j^)=a·b-a2b2
 and   (a×k^)(b×k^)=a·b-a3b3

 From Eq. (i), we get
cosθ=3a·b-a1b1+a2b2+a3b3
=3a·b-a·b
a·b|a||b|=2a·b|a||b|=12
 Now, use AM  GM on |a|,|b|
|a|+|b|2(|a|·|b|)12|a|+|b|22
|a|+|b|2

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon