Q.

The area of the greatest isosceles triangle that can be inscribed in an ellipsex2/16+y2/3=1 having its vertex coincident with an extremity of the major axis is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 9.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Question Image

Let APQ be an isosceles  triangle inscribed in the ellipse x216+y23=1 with the Vertex A at the extremity (4, 0) of the major axis.

 If the coordinates of P are (4cos θ,3sin θ), then those of Q will be (4cos θ,3sin θ)
So the area of APQ is given by
A=12PQ×AD=12(2PD)×AD=PD×(OAOD)
A=(bsinθ)(a-acosθ) A=absinθ-absinθcosθ      A=432(2sinθ-sin2θ) Diff w.r.to θ on both sides dAdθ=23(2cosθ-2cos2θ) for max or min dAdθ=0 cosθ-2cos2θ+1=0 2cos2θ-cosθ-1=0 (2cosθ+1)(cosθ-1)=0 cosθ=12[cosθ1 as θ0]
θ=2π3

Hence, maximum area
A=12432sin 2π3sin 4π3 A=23(2(32)+32) A=9

 

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The area of the greatest isosceles triangle that can be inscribed in an ellipsex2/16+y2/3=1 having its vertex coincident with an extremity of the major axis is