Q.

The coefficient of x301 in the expansion of (1+x)500+x(1+x)499+x2(1+x)498+...+x500 is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

 501C301

b

 500C301

c

 501C300

d

none of these

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let S=(1+x)500+x(1+x)499+x2(1+x)498+...+x500

This is sum of first 501 terms of Geometric progression whose first term is 1+x500 and the common ratio is x1+x

We know that the sum of the first n terms of Geometric progression whose first term is a and common ratio r is S=a1-rn1-r

Hence,

           S=1+x5001-x1+xn1-x1+x =1+x5001+x501-x5011+x50111+x =1+x501-x501

S=(1+x)501x501

The coefficient of xr in the expansion of 1+xn is Cr   n

Hence, coefficient of x301 in S is C301   501

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The coefficient of x301 in the expansion of (1+x)500+x(1+x)499+x2(1+x)498+...+x500 is