Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

The coordinates of the point P on the line 2x+3y+1=0, such that |PA-PB| is maximum, where A is (2,0) and B is (0,2) is

 

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

5,-3

b

7,-5

c

9,-7

d

11,-9

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given equation of line is 2x+3y+1=0.

Given points are A2,0, B0,2.

Let the coordinates of point P is h,k.

Let PAB forms a triangle as with any three points we can form a triangle.

In a triangle the difference between two sides should be less then the third side.

|PA-PB|<|AB|

Let the three points PAB are collinear.

Then the difference of PA and PB will be AB.

|PA-PB|=|AB|

By combining above two statements we can say that |PA-PB||AB|.

Thus, maximum value of |PA-PB| is |AB|, which is possible only when P,A,B are collinear.

The value of AB=2-02+0-22=4+4=8=22.

As maximum of |PA-PB| is |AB|=22,

|PA-PB|=22

The equation of line AB will be

y-0=2-00-2x-2 x+y=2

As P,A,B are collinear, the point P lies on AB, and also P lies on 2x+3y+1=0.

h+k=2, 2h+3k+1=0

By solving above equations we get values of h,k.

As h=2-k from first equation, by substituting it in second one we get,

22-k+3k+1=4-2k+3k+1=5+k=0 k=-5.

As k=-5h=2--5=2+5=7.

Then, the coordinates of point P7,-5.

Thus, the coordinates of point P is 7,-5 and maximum value of |PA-PB| is 22.

Therefore, the correct answer is option 2.

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon