Q.

The curve y=f(x) Passes through the origin O and the tangent to the curve at the origin is the x-axis . The tangent at any point P(x,y) on the curve makes an angle ψ with the x-axis and the arc length OP is s. Then the relation between ψ and s will be called the intrinsic equation of the curve.

Question Image

 

 

 

 

 

 

Also, the length l of the arc AB on the curve y=f(x), where A=(x1,y1) and  B=(x2,y2) is given by l=x=x1x2ds where (ds)2=(dx)2+(dy)2 and so dsdx=1+(dydx)2 based on above information which of the following statements is/are correct?

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

The distance between the points (0,1) and (1,2) along the curve y=x2+1 is 52+14log(2+5) 

b

In the parabola y2=4x the ends of the double ordinate through the focus are P and Q.
 Let O be the Vertex. Then the length of the arc POQ of the parabola is 22+log(3+22)

c

The intrinsic equation of the curve x=a(θ+sinθ),y=a(1cosθ) is s=4asinψ

d

The intrinsic equation of the curve x=a(θ+sinθ),y=a(1cosθ) is s=aψ

answer is A, B, C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Both points are on the curve. So, the required distance is the arc length of the curve y=x2+1  from the point (0,1) and (1,2) .
 the requires distance 
=x=01ds=01dsdxdx=011+(dydx)2dx =011+(2x)2dx =[12{2x24x2+1+12log(2x+4x2+1)}]01 =52+14log(2+5)

So, the correct answer is A

2. Here y2=4x dydx=2y.

Question Image

 

 

 

 

 

So arc POQ=2×arcOP=201ds

arc POQ=2011+(dydx)2dx=2011+4y2dx =2011+44xdx=201x+1xdx =20π4sec2θtan2θ.2tanθ.sec2θdθ

(putting x=tan2θ)

=40π4sec3θdθ

Now, I=0π4sec3θdθ=(secθ.tanθ)0π40π4tanθ.secθ.tanθ.dθ

=20π4(sec3θsecθ)dθ=2I+[log(secθ+tanθ)]0π42I=2+log(2+1).

 

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The curve y=f(x) Passes through the origin O and the tangent to the curve at the origin is the x-axis . The tangent at any point P(x,y) on the curve makes an angle ψ with the x-axis and the arc length OP is s. Then the relation between ψ and s will be called the intrinsic equation of the curve.      Also, the length l of the arc AB on the curve y=f(x), where A=(x1,y1) and  B=(x2,y2) is given by l=∫x=x1x2ds where (ds)2=(dx)2+(dy)2 and so dsdx=1+(dydx)2 based on above information which of the following statements is/are correct?