Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

The differential equation of all 'Simple Harmonic Motions' of given period 2πn is 2πωx=acos(ωt+ϕ)

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

d2xdt2+n2x=0

b

d2xdt2-n2x=0

c

d2xdt2+1n2x=0

d

d2xdt2+nx=0

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

 Given, the equation of simple harmonic motion:
x=acos(ωt+ϕ)
Here, a= Amplitude,
t= time period,
ϕ= phase angle.
we law, ω=2πt.

Then,

x=acos2πt·t+ϕ
for given period of 2πn;t=2πn.
So, we have.
x=acos2π2π/n·t+ϕ x=acos(n·t+ϕ)     ......1
Differentiate both sides with respect to t,,
dxdt=-nasin(nt+ϕ)  ddx(cosx)=-sinx
Again, differentiate the above equation,
 we have, d2xdt2=-n2acos(nt+ϕ)  .....2                ddx{sinx)=cosx
Now, substitute (1) in (2), we get
d2xdt2=-n2x  {x=acos(nt+ϕ)}
d2xdt2+n2x=0

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon