Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The equation of motion of a projectile is y = ax-bx2 where a and b are constants of motion. Match the quantities of Column - I with the relations of Column - II and mark the correct choice from the given codes.

 Column-I Column-II
(i)The initial velocity of projection(p)ab
(ii)The horizontal range of projectile(q)a2bg
(iii)The maximum vertical height attained by projectiler)a24b
(iv)The time of flight of projectile(s)g(1+a2)2b

Codes

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

i-s, ii-p,iii-q, iv-r

b

i-s, ii-p, iii-r, iv-q

c

i-p, ii-s, iii-r, iv-q

d

i-p, ii-q, iii-r, iv-s

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Comparing given equation, y = ax-bx2 with the equation of projectile motion

y = x tan θ- gx22u2cos2θ

We get, tan θ = a-------(i)

       g sec2θ2u2 = b----(ii)

or u2 = g(1+tan2θ)2b = g(1+a2)2b    (Using (i)

or u = [g(1+a2)2b]

Here i-s.

Horizontal range = u2sin2θg = 2u2sinθ cosθ g

                          = = 2u2cos2θg×tanθ = ab                                               (Using (i) and (ii))

Hence ii-p.

Maximum height = u2sin2θ2g = u2cos2θ2g×tan2θ

                          = 2u2cos2θ4g×tan2θ = a24b                                              (Using (i) and (ii))

Hence iii-r.

From (ii), b = g2u2cos2θ

or u2cos2θ = g2b or u cos θ = g2b          (iii)

Time of flight = 2u sin θg=2gu cosθ× tanθ

                    = 2gg2b×a = a2bg                                           (Using (i) and (iii))

Hece iv-q

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon