Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The equation of the line meeting the circle x2 + y2 = a2 , two points at equal distances d from a point (x1 ,y1 ) on the circumference is


see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

xx1 + yy1 – a2 + d22 = 0

b

xx1 - yy1 – a2 + d22 = 0

c

xx1 + yy1 + a2 - d22 = 0

d

xx1 + yy1 – a2 + d22 = 0 

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

seoLet us assume from the above figure that line AB is the required line whose equation is to be found. We know that in the parametric form any point on the circle is assumed as (r cosθ,r sinθ), where ‘r’ is the radius of the circle.
Here, the equation of the circle, x2 +y2 = a2 . So, the radius of the circle is ‘a’. Therefore, assuming point A and B as (a cosθ, a sinθ) and (a cosϕ, a sinϕ) respectively.
We have been given that the distance of point P from A and B are equal.
 PA = PB.
Using distance formula: -  d = (x1- x2)2+ y1- y22 , we get,
(x1- a cosθ)2+ y1- a sinθ2 =  (x1- a cosϕ)2+ y1- a sinϕ2 On squaring both sides, we get,
(x1- a cosθ)2+ y1- a sinθ2 = (x1- a cosϕ)2+ y1- a sinϕ2
⇒ (x12 + a2cos2θ - 2ax1 cosθ) + (y12 + a2sin2θ - 2ay1 sinθ)   ⇒ (x12 + a2cos2ϕ - 2ax1 cosϕ) + (y12 + a2sin2ϕ - 2ay1 sinϕ)   Cancelling the common terms and using the identity: - cos2x + sin2 = 1, we get,
⇒ −2ax1cosθ − 2ay1sinθ = − 2ax1cosϕ − 2ay1sinϕ
⇒ − x1cosθ – y1sinθ = − x1cosϕ – y1sinϕ
⇒ x1 (cosθ − cosϕ) = − y1 (sinθ − sinϕ)
sinθ-sinϕcosθ-cosϕ = - x1y1 ------- (1)
Now, earlier we have calculated,
⇒ d = (x1- a cosθ)2+ y1- a sinθ2
On squaring both sides, we get,
⇒ d2 = x12 + a2cos2θ - 2ax1cos θ + y12 + a2sin2θ - 2ay1sin θ ⇒ d2 = x12 + y12 + a2 - 2a ( x1cos θ + y1sin θ ) -------- (ii)
Since, point P (x1 ,y1) lies on the circle, therefore it will satisfy the equation of the circle.
x12 + y12 = a2
Substituting this value in equation (ii), we get,
⇒ d2 = 2a2 - 2a ( x1cos θ + y1sin θ ) ------ (iii)
Now, we know that equation of a line with points (a, b) and (c, d) is given as:
⇒ (y−b) = b-da-c(x−a)
So, equation of the line AB with points A (a cosθ, a sinθ) and B (a cosϕ, a sinϕ) can be given as:
⇒ (y – a sinθ) = asinθ-asinϕacosθ-acosϕ (x – a cosθ)
⇒ (y – a sinθ) = sinθ-sinϕcosθ-cosϕ (x – a cosθ)
Using equation (i), we get,
⇒ (y – a sinθ) = -x1y1− (x – a cosθ)
By cross – multiplication we get,
⇒ yy1 – ay1sinθ = −xx1 + ax1cosθ
⇒ yy1 + xx1 = a ( y1sinθ + x1cosθ )
Using equation (iii), we get,
⇒ yy1 + xx1 = 2a2 - d22   ⇒ yy1 + xx1 = a2 - d22
⇒ yy1 + xx1 - a2 + d22 = 0
Hence, option (1) is the correct answer.
 
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring