Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The equation z2i|z1|2=0, where i=1 has 

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

No real root

b

No purely imaginary root

c

All roots inside |z|=1

d

At least two roots

answer is A, B, C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

On putting       z = x + iy, we have

(x+iy)2i|x+iy1|2=0

x2y2+2ixyi((x1)2+y2)=0

On comparing real and imaginary parts, we get

x2y2=0   and ​ 2xy=(x1)2+y2

Case 1  When y= x, then 2xy=(x1)2+y2 reduces to

2x2=(x1)2+x2

0=-2x+1

x=12=y

z=x+iy=1+i2

Case II   when y =-x. then 2xy=(x1)2+y2 reduces to

2x2=(x1)2+x2

(x1)2+3x2=0 ​ . which is not possible

From Eqs. (i) and (ii) , we get z=1+i2

i.e ,  no real  and no purely imaginary   roots and |z|=12<1               

Watch 3-min video & get full concept clarity

course

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The equation z2−i|z−1|2=0, where i=−1 has