Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The expression cose c 2 A cot 2 A sec 2 A tan 2 A( cot 2 A tan 2 A)( sec 2 A+cose c 2 A1)   is equal to


see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

0

b

1

c

sec 2 A  

d

cose c 2 A   

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

First, we write required trigonometric properties as shown below,
sin 2 x+ cos 2 x=1  
tanx= sinx cosx  
secx= 1 cosx  
Now, we write the required algebraic formulas as,
x 3 y 3 =(xy)( x 2 + y 2 +xy)  
x 2 y 2 = (x+y) 2 2xy  
In this question, we have given trigonometric expression as,
cose c 2 A cot 2 A sec 2 A tan 2 A( cot 2 A tan 2 A)( sec 2 A+cose c 2 A1)   Now we will break the given trigonometric expression into two parts or the trigonometric expression can be written as P − Q.
Here, P=cose c 2 A cot 2 A sec 2 A tan 2 A and=( cot 2 A tan 2 A)( sec 2 A+cose c 2 A1)  
Now we can write the expression as,
cose c 2 A cot 2 A sec 2 A tan 2 A( cot 2 A tan 2 A)( sec 2 A+cose c 2 A1)=PQ  
First, we will solve the term P by expanding the  cosec  and  cot   terms in  sin  and  cos   terms because it is easy to solve and calculate.
P=cose c 2 A cot 2 A sec 2 A tan 2 A  
Now we will apply the trigonometric properties as,
P= 1 sin 2 A × cos 2 A sin 2 A 1 cos 2 A × sin 2 A cos 2 A  
Now, we will simplify the above expression as,
P= cos 2 A sin 4 A sin 2 A cos 4 A  
After simplification we will get,
P= cos 6 A sin 6 A sin 4 A cos 4 A  
Now we will use the algebraic formula in the numerator of the expression to find the easiest form and then solve it accordingly.
P= cos 2 A 3 sin 2 A 3 sin 4 A cos 4 A  
Now, we will apply the algebraic properties as,
P= cos 2 A sin 2 A cos 4 A+ sin 4 A+ sin 2 A cos 2 A sin 4 A cos 4 A  
Now, we will simplify the above expression as,
P= cos 2 A sin 2 A cos 2 A+ sin 2 A 2 sin 2 A cos 2 A sin 4 A cos 4 A  
After simplification we will get,
First, we will solve the term Q by expanding the cosec   and  cot   terms in  sin  and  cos   terms because it is easy to solve and calculate.
Q= 1 sin 2 A cos 2 A sin 2 A sin 2 A cos 2 A 1 cos 2 A + 1 sin 2 A 1  
Now, we will apply the algebraic properties as,
Q= cos 4 A sin 4 A sin 2 A cos 2 A 1 sin 2 A cos 2 A sin 2 A cos 2 A  
After simplification we will get,
Q= cos 2 A sin 2 A 1 sin 2 A cos 2 A sin 4 A cos 4 A  
Now, we will substitute cos 2 A sin 2 A 1 sin 2 A cos 2 A sin 4 A cos 4 A  for P and
cos 2 A sin 2 A 1 sin 2 A cos 2 A sin 4 A cos 4 A  for Q in the expression PQ   to find the solution of the trigonometric expression.
PQ= cos 2 A sin 2 A 1 sin 2 A cos 2 A sin 4 A cos 4 A cos 2 A sin 2 A 1 sin 2 A cos 2 A sin 4 A cos 4 A  
After simplification, we will get
PQ=0  
Therefore, the solution of the trigonometric expression cose c 2 A cot 2 A sec 2 A tan 2 A( cot 2 A tan 2 A)( sec 2 A+cose c 2 A1)   is 0.
 
Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon