Q.

The following frequency distribution gives the monthly consumption of an electricity of 68 consumers in a locality. Find the median, mean and mode of the data and compare them.

Monthly consumption(in units)No. of customers
65-854
85-1055
105-12513
125-14520
145-16514
165-1858
185-2054

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Find the cumulative frequency of the given data as follows:

Class IntervalFrequencyCumulative frequency
65-8544
85-10559
105-1251322
125-1452042
145-1651456
165-185864
185-205468
 N=68 

From the table, it is observed that, n = 68 and hence n/2=34

Hence, the median class is 125-145 with cumulative frequency = 42

Where, l = 125, n = 68, Cf = 22, f = 20, h = 20

Median is calculated as follows:

Ncert solutions class 10 chapter 14-1

=125+(34-2220) × 20

=125+12 = 137

Therefore, median = 137

To calculate the mode:

Modal class = 125-145,

f1=20, f0=13, f2=14 & h = 20

Mode formula:

Mode = l+ [f1-f02f1-f0-f2]×h

Mode = 125 + (20-1340-13-14)×20

=125+(14013)

=125+10.77

=135.77

Therefore, mode = 135.77

Calculate the Mean:

Class Intervalfixidi=xi-aui=di/hfiui
65-85475-60-3-12
85-105595-40-2-10
105-12513115-20-1-13
125-14520135000
145-1651415520114
165-185817540216
185-205419560312
 Sum fi= 68   Sum fiui= 7

x̄ =a+h  fiui fi =135+20(768)

Mean=137.05

In this case, mean, median and mode are more/less equal in this distribution.

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon