Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The following function are continuous on (0,π):

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

tanx

b

0πtsin(1t)dt

c

1,            0<x3π42sin29x,3π4<x<π  

d

xsinx,      0<xπ/2π2sin(π+x),π2<x<π  

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The  function f(x) =tanx  is not defined at x=π2, so f  is not continuous on (0,π)  since, the function g(x)=xsin1x  is continuous on (0,π)  and  the integral function of a continuous function is continuous, therefore F(x)=0xtsin1tdt  is continuous on (0,π) .

For the function  f(x)=1, 0<x3π42sin29x,3π4<x<π 

limx3π4f(x)=1,  and limx3π4+f(x)=limh0f(3π4+h)

                                              =limh02sin29(3π4+h)

                                              =2sinπ/6=1  and f(3π/4)=1

f(x)  is continuous at x=3π/4  evidently

f(x)  is continuous at all other points.

For the function

F(x)=  xsinx,0<xπ2π2sin(π+x),π2<x<π 

F(π/2)=π2sinπ2=π2

limxπ2F(x)=limh0F(π2h)

                  =limh0(π2h)sin(π2h)

                     =π2sinπ2

                      =π2

limxπ2+F(x)=limh0F(π2+h)

                     =limh0π2sin(3π2+h)

                   =π2sin3π2=π2

F(x)  is not continuous at x=π2

 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring