Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

The function f is defined in [5,5] as f(x) = x, if x is rational and f(x) = x, if x is irrational. Then

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

f(x) is continuous everywhere.

b

f(x) is continuous at every x, except x = 0.

c

f(x) is discontinouous at every x, except x = 0.

d

f(x) is discontinuous everywhere.

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let a is a rational number other than 0, in [-5, 5], then 
f(a)=a and limxaf(x)=-a
[As in the immediate neighbourhood of a rational number, we find irrational numbers] 
∴f(x) is not continuous at any rational number 

If a is irrational number, then f(a)=−a andlimxaf(x)=a
∴f(x) is not continuous at any irrational number 

clearly 
limx0f(x)=f(0)=0 
∴f(x) is continuous at x = 0

 

 L.H.L. =limxaf(x)=limh0f(ah)=0 or 1

 R.H.L. =limxa+f(x)=limh0f(a+h)=0 or 1

So, f(x) is discontinuous at x=a  a0.

 For a=0f(0)=0 R.H.L. =limx0+f(x)=0

Similarly L.H.L.= 0. Thus f(x) is continuous at x = 0 only.

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon