Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The function y = f (x) is the solution of the differential equation dydx+xyx21=x4+2x1x2 in (1,1) satisfying f(0)=0. Then3/23/2f(x)dx is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

π332

b

π334

c

π6-34

d

π632

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

dydx+xx21y=x4+2x1x2

The I.F. of this differential equation is

exx21dx=ex1x2dx=e12ln1x2=1x2

 Solution is y1x2=xx3+21x21x2dx+λ

=x4+2xdx+λ=x55+x2+λ

As y(0)=0λ=0y1x2=x55+x2

Now 3/23/2x5+x21x2dx=3/23/2x21x2dx

(The other part is odd)

 =203/2x21x2dx Let x=sinθ, we get

I=20π/3sin2θcosθcosθdθ=20π/3sin2θdθ =0π/3(1cos2θ)dθ=θsin2θ20π/3=π334

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring