Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

 The function y=f(x) whose graph passes through (0,0) and whose derivative is cos4x+sin4xcos2xsin2x is given by 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

18log1+tanx1tanx+12sin2x

b

14sinx+12log(tanx)

c

12sin2x+14logtan(x+π4)

d

14sin2x+14logtan(x+π4)

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

f(x)=cos4x+sin4xcos2xsin2xdx Where result 2cos4x+sin4x=cos2x+sin2x2+cos2xsin2x2=1+cos2xsin2x2f(x)=12cos2xsin2x2+1cos2xsin2xdx=12cos2xsin2x+1cos2xsin2xdx

=12cos2xdx+sec2xdx=12sin2x2+12logtan2x2+π4+Cf(x)=14sin2x+14logtanx+π4+C Given the curve f(x) pass through (0,0)f(o)=00=0+0+CC=0 Hence, f(x)=14sin2x+14logtanx+π4

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring