Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The general solution of the differential equation (2xy+1)dx+(2yx+1)dy=0 is:

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

x2y22xy+xy=c

b

x2+y2+xyx+y=c

c

x2+y2xy+x+y=c

d

x2y2+2xyx+y=c

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

(2xy+1)dx+(2yx+1)dy=0

dydx=2xy+1x2y1, put x=X+h,y=Y+k

         dYdX=2XY+2hk+1X2Y+h2k1         2hk+1=0 h2k1=0

On solving h=-1, k=-1

 dYdX=2XYX2Y Put Y=vX dYdX=v+XdvdX

    v+XdvdX=2XvXX2vX=2v12v    XdvdX=22v+2v212v=2v2v+112v dXX=(12v)2v2v+1dv

Put v2-v+1=t

 (2v1)dv=dt dXX=dt2t logX=logt1/2+logc X=t1/2c X=v2v+11/2c

X2v2v+1=Constant

(x+1)2(y+1)2(x+1)2(y+1)x+1+1=Constant

(y+1)2(y+1)(x+1)+(x+1)2=cy2+x2xy+x+y=c.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring