Q.

The greatest value of the function f(x)=2sinx+sin2x on the interval 0,3π2 is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

None of these 

b

3

c

32

d

332

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given data: f(x)=2sinx+sin2x

Differentiating with respect to x, f(x)=2cos x+2cos2x

f(x)=2(cosx+2cos2x-1)[cos2x=2cos2x-1]

f'(x)=2(2cosx-1)(cosx+1)

To find critical point of f(x), f'(x)=0

cosx=-1,12x=π,π3

The values at critical points \lambda end points at x=0,π3,π,3π2

f(0)=0 f(π3)=2sinπ3+sin(2π3)=32+232 f(π3)=332 f(π)=0 f(3π2)=2sin3π2+sin(23π2) f(3π2)=-2

Hence the greatest value of the function f(x)=2sinx+sin2x in the critical interval 0,3π2 is 332.

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The greatest value of the function f(x)=2sinx+sin2x on the interval 0,3π2 is